University of Houston High School Math Contest – Spring 2016 Calculus Test

NAME: _____

SCHOOL:

- 1. $\lim_{x \to 0} \frac{\tan^3 2x}{x^3} =$ (a) 1/8
 (b) 4
 - (c) 8
 - (d) 1/4
 - (e) The limit does not exist

2.
$$\lim_{x \to 0} \frac{e^{ax^2} - \cos 2x}{x^2} = 8$$
. What is *a*?
(a) $a = 3$
(b) $a = 6$
(c) $a = 4$
(d) $a = 2$
(e) $a = 1$

3.
$$\lim_{h \to 0} \frac{\int_{\frac{\pi}{6}}^{\frac{\pi}{6}+h} \frac{\sin x}{x} dx}{h} =$$
(a) 0
(b) $\frac{\sqrt{3}}{2}$
(c) $\frac{\pi}{3}$
(d) $\frac{3}{\pi}$
(e) $\frac{6}{\pi}$

4. The values of A and B such that

$$f(x) = \begin{cases} x^2 - 2, & x \le 2\\ Ax^2 + Bx, & x > 2 \end{cases}$$

is everywhere differentiable are:

- (a) a = 1/2, B = 2(b) a = 1/4, B = 1/2(c) a = -3/2, B = 2(d) a = 2, B = -1(e) a = 3/2, B = -2
- 5. Set $f(x) = x^3 6x$. The value of c that satisfies the Mean-Value Theorem for Derivatives on the interval [0,5] for f is
 - (a) $\frac{5}{\sqrt{3}}$
 - (b) 0
 - (c) $\frac{1}{\sqrt{3}}$
 - (d) $\frac{5}{3}$
 - (e) $\frac{-5}{\sqrt{3}}$

6. If f and g are twice differentiable. and h(x) = f[g(x)], then h''(x) =

- (a) f''[g(x)]g'(x) + f'[g(x)]g''(x)
- (b) $f''[g'(x)][g'(x)]^2 + f[g'(x)]g''(x)$
- (c) $f''[g(x)] [g'(x)]^2 + f'[g(x)]g''(x)$
- (d) f''[g(x)]g'(x) + f[g(x)]g''(x)
- (e) $f'[g(x)] [g'(x)]^2 + f[g(x)]g''(x)$

- 7. The normal line to the curve $y = 2x^2 4x + 2$ at the point (2, 2) has an x-intercept at:
 - (a) (5/2, 0)
 - (b) (10,0)
 - (c) (5,0)
 - (d) (2,0)
 - (e) (-5/2, 0)
- 8. When the local linearization of $f(x) = \sqrt{4 + \ln(1+x)}$ near x = 0 is used, an estimate of f(0.08) is:
 - (a) 1.98
 - (b) 2.01
 - (c) 2.02
 - (d) 2.04
 - (e) 2.06

9. Which of the following statements about the function $f(x) = x^4 - 4x^3$ is true?

- (a) The graph of f has no points of inflection and the function has one relative extremum.
- (b) The graph of f has one point of inflection and the function has two relative extrema.
- (c) The graph of f has two points of inflection and the function has two relative extrema.
- (d) The graph of f has two points of inflection and the function has one relative extremum.
- (e) The graph of f has one point of inflection and the function has one relative extremum.
- 10. The position of a particle moving along the x-axis is given by

$$s(t) = \int_0^t \left(u^2 - 6u + 8\right) du$$

for $0 \le t \le 8$. For what values of t is the speed of the particle increasing?

- (a) 2 < t < 4 only
- (b) t > 4 only
- (c) t > 3 only
- (d) 0 < t < 2 and t > 4
- (e) 2 < t < 3 and t > 4

- 11. The function $f(x) = x^3 + 2x 6$ has an inverse. If the graph of f passes through the point (2, 6), then $(f^{-1})'(6) =$
 - (a) 1/14
 - (b) 1/10
 - (c) -6
 - (d) 14
 - (e) 10
- 12. A particle moves along the ellipse $3x^2 + 2y^2 4y = 3$ so that dy/dt = 3 at all times t. The speed of the particle when it is at the point (1, 2) is:
 - (a) $\sqrt{14}$
 - (b) $\sqrt{13}$
 - (c) 5
 - (d) $2\sqrt{3}$
 - (e) 4

13. The average value of $f(x) = x \ln x$ on [1, e] is:

(a)
$$\frac{e^2 + 1}{4}$$

(b) $\frac{e^2 + 1}{4(e+1)}$
(c) $\frac{e+1}{4}$
(d) $\frac{e^2 + 1}{4(e-1)}$
(e) $\frac{2e^2 + 1}{4(e-1)}$

14. Given that $\int_0^2 f(x) dx = \frac{8}{3}$, $\int_1^2 f(x) dx = \frac{4}{3}$, and $\int_0^3 f(x) dx = \frac{11}{3}$, find $\int_3^1 f(x) dx$. (a) -5/3 (b) 2 (c) 7/3

- (c) 1/3
- (d) 5/3
- (e) -7/3

15.
$$\int e^{2x} \sqrt{e^x - 3} \, dx =$$

(a) $\frac{2}{5} (e^x - 3)^{5/2} + 2(e^x - 3)^{3/2} + C$
(b) $\frac{4}{5} (e^x - 3)^{5/2} + \frac{3}{5} (e^x - 3)^{3/2} + C$
(c) $\frac{5}{2} (e^x - 3)^{5/2} - \frac{3}{2} (e^x - 3)^{3/2} + C$
(d) $\frac{2}{5} (e^x - 3)^{5/2} + \frac{2}{3} (e^x - 3)^{3/2} + C$
(e) $\frac{4}{5} (e^x - 3)^{5/2} + (e^x - 3)^{3/2} + C$

16. The region bounded by $y = e^x$, y = 1, and the line x = 2 is rotated about the y-axis. Which of the following integrals gives the volume of the solid which is generated:

(A)
$$\pi \int_0^2 e^{2x} dx$$
, (B) $2\pi \int_0^2 x(e^x - 1) dx$, (C) $\pi \int_0^2 \left(e^{2x} - 1\right) dx$
(D) $2\pi \int_1^{e^2} y(2 - \ln y) dy$, (E) $\pi \int_1^{e^2} \left(4 - \ln^2 y\right) dy$

- (a) (A) and (D)
- (b) (B) and (E),
- (c) (A), (D) and (E)
- (d) (C) and (D) (
- (e) (B) only

17. If f is a continuous function and $F(x) = \int_0^x \left[(t^2 + 2t) \int_t^2 f(u) \, du \right] dt$, then F''(2) =

- (a) 4f(2)
- (b) 4f'(2)
- (c) -4f'(2)
- (d) -8f(2)
- (e) 8f(2)
- 18. A cylindrical container 2 feet in diameter and 4 feet high is half full of oil weighing 50 pounds per cubic foot. The work done, in foot-pounds, in pumping the oil to an outlet one foot above the top of the container is:
 - (a) 100π
 - (b) 250π
 - (c) 400π
 - (d) 500π
 - (e) 800π

19.
$$\int_{4}^{\infty} \frac{2 dt}{16 + t^{2}} =$$
(a) $\pi/2$
(b) $\pi/8$
(c) $\pi/16$
(d) $\pi/4$
(e) Divergent
20. If $x = 2 \sin \theta$, then $\int_{1}^{2} \frac{x^{2}}{\sqrt{4 - x^{2}}} dx$ is equivalent to
(a) $4 \int_{1}^{2} \sin^{2} \theta d\theta$
(b) $2 \int_{0}^{\pi/2} \sin \theta \tan \theta d\theta$
(c) $2 \int_{\pi/6}^{\pi/2} \frac{\sin^{2} \theta}{\cos^{2} \theta} d\theta$
(d) $4 \int_{0}^{\pi/2} \sin^{2} \theta d\theta$
(e) $4 \int_{\pi/6}^{\pi/2} \sin^{2} \theta d\theta$

21. If
$$\frac{dy}{dx} = \frac{2x^3 - 1}{y}$$
 and $y = 2$ when $x = 1$, then, when $x = 2$, $y = (a) \pm \sqrt{17}$
(b) $\pm \sqrt{15}$
(c) ± 5
(d) $\pm 2\sqrt{3}$
(e) $\pm 2\sqrt{5}$

22. Which differential equation which has the slope field

			5			1	1						1		
	dy = 3	10 - 1	5	2	22	5	20		55	55					5
(a)	<u> </u>	8-		2					5.0			ز المرابل	ز		<u>.</u>
	$\frac{dy}{dx} = \frac{3}{x}$		2	1	//	2	~ >	- /	11	11		///	2//		2
(b)	_	6 -	~~~	2	//	1	242	////	17		÷~~	4-2-2		· · · / ·	1
	$\frac{dy}{dx} = \frac{x}{y}$		1	13	/ /	1	14	/ /	11	11	911	1.1.1	1.1.1	21	2
	$\frac{1}{1} = -$	4	1	1	/ /		11		17	11	11		111	1	21
` '	dx y	2 -		1.1			/ /		11		1.1.1	<u></u>	<u>, , , ,</u>	<u></u>	
				1		4	11		1 1	14	1.				-{
(c)	$\frac{dy}{dx} = 3y$	0-									· · · { · · ·		\		
	$\frac{3}{1} = 3y$		÷.	X	ι.	Å	1				i v				Ϋ́,
()	dx	-2	X	13	$\langle \rangle$	1	1 1	<u> </u>	$\overline{\mathbf{X}}$	1	1.	1	$\langle \rangle \rangle$	< \ \	X
	day 9	-4	. <u>.</u>	<u>×.</u>	<u> </u>		$\langle \rangle$		<u>\ \</u>	<u> </u>			<u></u>	Ś	5
(\mathbf{J})	$\frac{dy}{dx} = \frac{3}{y}$		~	\sim	~ ~	\mathbf{N}	\sim	~ ~	\sim	\times	$\langle \times \rangle$	$\langle \times \rangle$	~ ~ ^	~ ~	S
(a)	$\overline{1}$	-6 - 1		>	<	\sim		· · · · · ·	> >			<u></u>	÷	÷	
	dx y		$\sum_{i=1}^{n}$	\geq			≥ 0		\geq						\geq
	J	-8				2			\sum	22					31
()	ay	10 -		_		2			22	1			2	1.2.	2
(e)	$\frac{dy}{dx} = x - y$		i	· .		i.	- i			i È	<u>.</u>	i i	i i	í í	i.
. ,	ax		-10	-8	1	-6	-4	-1	2	0 X	2	4	6	8	10

23. The curve $r = 2 \sin 3\theta$ is shown in the figure. The area enclosed by one loop of the curve is:

24. A curve in the plane is defined by the parametric equations

$$x = t^{2} + 1, \quad y = \frac{1}{3}t^{3} - t + 2, \quad 0 \le t \le 3.$$

Find the length of the curve.

- (a) $2\sqrt{3}$
- (b) 12
- (c) 8
- (d) 10
- (e) $\sqrt{14}$
- 25. If 50 grams of a radioactive substance decays to 25 grams in two hours, then, to the nearest gram, the amount left after 5 hours is:
 - (a) 5
 - (b) 7
 - (c) 9
 - (d) 10
 - (e) 12

- 26. If a block of ice melts at the rate of $\frac{64}{2t+3}$ cm³/min, then the closest approximation to the amount of ice which melts during the first three minutes is:
 - (a) $29 \, \text{cm}^3$
 - (b) $32 \, \text{cm}^3$
 - (c) $35 \, \text{cm}^3$
 - (d) $40 \, \text{cm}^3$
 - (e) $48 \, \text{cm}^3$

27. Which infinite series converge(s)?

(I)
$$\sum_{n=1}^{\infty} \frac{10^n}{n!}$$
 (II)
$$\sum_{n=1}^{\infty} \frac{2n^2}{\sqrt{4n^5 + 2n + 1}}$$
 (III)
$$\sum_{n=1}^{\infty} \frac{2^{3n}}{3^{2n}}$$

(a) I and III
(b) I only
(c) I and II

- (d) III only
- (e) I, II and III

28. Suppose that the power series $\sum_{k=0}^{\infty} a_k (x-2)^k$ converges at x = 4. Which of the following series must be convergent?

I.
$$\sum_{k=0}^{\infty} a_k 3^k$$
 II. $\sum_{k=0}^{\infty} a_k$ III. $\sum_{k=0}^{\infty} (-1)^k a_k$ IV. $\sum_{k=0}^{\infty} (-1)^k a_k 2^k$

- (a) II only
- (b) I and III
- (c) II, III, and IV
- (d) III and IV
- (e) II and III

- 29. Using two terms of an appropriate Maclaurin series (Taylor series at x = 0), estimate $\int_0^1 \frac{1 \cos x}{x} dx.$
 - (a) $\frac{19}{96}$ (b) $\frac{23}{96}$ (c) $\frac{1}{4}$
 - (d) $\frac{25}{96}$
 - (e) undefined; the integral is improper
- 30. A function f is infinitely differentiable and has the property that $|f^{(k)}(x)| \le k2^k$ for all $x \in (-1, 1)$ and all k. Find the least integer n such that the Taylor polynomial of degree n in powers of x for f approximates f(1/4) to within 0.0005
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6
 - (e) 7