## University of Houston High School Math Contest - 2018

## **Pre-Calculus Test**

1. f(x) is a quadratic function satisfying f(2) = 17, f(3) = 35 and f(4) = 61. Find the remainder when f(x) is divided by x-1.

- A) 3
- B) 7
- C) 9
- D) 11
- E) 4
- F) None of these
- 2. Let M be a non-zero digit. When the sum of the 50 numbers

 $\underbrace{\underbrace{M}_{1 \text{ digit}}}_{2 \text{ digits}}$  $\underbrace{\underbrace{MMM}_{3 \text{ digits}}}_{3 \text{ digits}}$  $\vdots$  $\underbrace{\underbrace{MMMM}_{50 \text{ digits}}}$ 

is divided by 9, the remainder is 3. Find the sum of all possible values of M.

- A) 7
- B) 10
- C) 13
- D) 15
- E) 17
- F) None of these
- 3. Let  $f(x) = 18e^{2x-1}$ ,  $g(x) = 2\log_3(10x+2)$ , and  $h(x) = \frac{4x-1}{6x+3}$ . Find the value of  $(f^{-1} \circ g \circ h^{-1})(\frac{1}{2})$ .

A) 
$$\frac{1+\ln 3}{2}$$
  
B) 
$$\frac{1-\ln 3}{2}$$
  
C) 
$$\ln\left(\frac{1}{3}\right)-1$$

- D)  $\ln\left(\frac{1}{3}\right) + \frac{1}{2}$
- E)  $1 + \ln 3$
- F) None of these
- 4. Let f(x) be a real valued function defined as:  $f(x) = \frac{x+1}{x^2+4}$ . Find the range of this function.

A) 
$$\left[\frac{1-2\sqrt{5}}{8}, \frac{1+2\sqrt{5}}{8}\right]$$
  
B) 
$$\left[\frac{-\sqrt{3}}{4}, \frac{\sqrt{5}}{4}\right]$$
  
C) 
$$\left[\frac{-\sqrt{3}}{8}, \frac{\sqrt{3}}{8}\right]$$
  
D) 
$$\left[\frac{1-\sqrt{3}}{8}, \frac{1+\sqrt{3}}{8}\right]$$
  
E) 
$$\left[\frac{1-\sqrt{5}}{8}, \frac{1+\sqrt{5}}{8}\right]$$

5. Let 
$$f(x) = \frac{(1+x+x^2+x^3)(1-x)^2}{1-x-x^2+x^3}$$
, where  $x > 1$ .

Evaluate the following:  $f(\sqrt{2}) + f^{-1}(10)$ .

- A) 4
- B) 5
- C) 6
- D) 7
- E) 10
- F) None of these

- 6. Let *a* be a real number with -10 < a < 0. The vertical asymptote of the function  $f(x) = \ln(8x+2)$  is also a vertical asymptote of  $g(x) = \frac{x + \sin x}{2x + \cos(a\pi x)}$ . Find the sum of all possible values of *a*.
  - A)  $-\frac{8}{3}$ B)  $-\frac{22}{3}$ C)  $-\frac{52}{3}$ D) -4 E) -8 F) None of these
- 7. Let y be the product of all real solutions of the equation  $x^{\ln 4} 6 \cdot 2^{\ln x} + 8 = 0$ . Evaluate the following expression:  $\ln(y^2) + \log_y(e)$ .
  - A) 5/3
  - B) 19/3
  - C) 13/6
  - D) 10/3
  - E) 17/6
  - F) None of these

8. Let *S* be the set of all real solutions of the inequality:  $(x-1)^2 < |x-1|+6$ . Let *T* be the domain of the function  $g(x) = \arcsin\left(\tan\left(\frac{x}{4} + \frac{\pi}{12}\right)\right)$ . Find  $S \cap T$ .

A) 
$$\left(\frac{-4\pi}{3}, 4\right)$$
  
B)  $\left[\frac{-4\pi}{3}, -2\right)$   
C)  $\left(-2, \frac{2\pi}{3}\right]$   
D)  $\left(-\frac{4\pi}{3}, \frac{2\pi}{3}\right]$   
E)  $\left[-\frac{2\pi}{3}, \frac{4\pi}{3}\right]$   
F) None of these

UH Math Contest 2018 Pre-Calculus Test

9. Let A, B, C be sets defined as:

 $A = \{(x, x) : x \in \mathbb{R}\}$   $B = \{(x, 3 - x) : x \in \mathbb{R}\}$   $C = \{(x, x + 4) : x \in \mathbb{R}\}$ If  $(p,q) \in A \cap B$  and  $(r,s) \in B \cap C$ , find the value of  $\frac{p-r}{q+s}$ . A) 1/3 B) 1/4 C) 3/4 D) 4/5 E) 2/5 F) None of these

- 10. Let *n* be an integer and f(n) be defined as the first non-zero digit of the number *n* from the right. For example, f(10234500) = 5 and f(123) = 3. Find the value of f(x) at  $x = \sqrt{2000^{2020}}$ .
  - A) 2
    B) 4
    C) 6
    D) 8
    E) 1
    F) None of these
- 11. Let a, b, c, d be integers satisfying:

 $a \log_{10} 2 + b \log_{1000} 3 + c \log_{100} 5 + d \log_{0.1} 11 = 2018$ .

Evaluate 4a-b-c-2d.

- A) 8072
  B) 4036
  C) 12034
  D) 10090
  E) 2018
  E) None of the second sec
- F) None of these

12. Let p be a real number. Given that the distance between the foci of the ellipse

 $\frac{x^2}{(p+1)^2} + \frac{y^2}{(p-1)^2} = 1$  is 12, find the length of the major axis of this ellipse.

- A) 14
- B) 16
- C) 18
- D) 20
- E) 24
- F) None of these

13. Let 
$$x = \frac{1 + \cos(40^{\circ})}{\cos(55^{\circ}) \cdot \cos(35^{\circ})}$$
 and  $y = \frac{\tan(75^{\circ})}{\sin(25^{\circ})} - \frac{1}{\cos(25^{\circ})}$ .

Which of the following is equivalent to  $x \cdot y$ ?

- A)  $4\cos(40^{\circ})\cos(75^{\circ})$
- B)  $2\cos(40^{\circ})\sec(75^{\circ})$
- C)  $4\cos(20^{\circ})\sec(75^{\circ})$
- D)  $2\cos(40^{\circ})\cos(25^{\circ})$
- E)  $8\cos(20^{\circ})\sec(75^{\circ})$
- F) None of these

14. Let *Y* be defined as  $Y = \sum_{k=0}^{4} \cos(2kx)$  for any real number *x*. Express the value of  $\sum_{k=1}^{4} \cos^2(kx)$  in terms of *m*.

- A) Y + 3
- B)  $\frac{Y+3}{2}$
- C) Y + 4
- D) *Y* + 2
- E)  $\frac{Y+4}{2}$
- F) None of these

15. Let x be a real number in  $(0, \pi)$  satisfying

$$\frac{\sec(x)-1}{2\cot x} = \frac{-\tan^4 x}{\sec(x)+1}$$
. Evaluate:

$$\sin(2x) + \sin^{2}\left(\frac{x}{2}\right).$$
A)  $\frac{-3 + 2\sqrt{5}}{10}$ 
B)  $\frac{-3 - 2\sqrt{5}}{10}$ 
C)  $\frac{13 + 2\sqrt{5}}{10}$ 
D)  $\frac{-2 + 3\sqrt{5}}{15}$ 
E)  $\frac{-2 - 3\sqrt{5}}{15}$ 

F) None of these

## 16. Find the number of solutions of the equation

 $\cos(5x) = \cos(3x) \cdot \cos(2x)$  over the interval  $[0, 2\pi]$ .

- A) 5
- B) 8
- C) 9
- D) 11
- E) 12
- F) None of these

17. Let z be a complex number and  $\overline{z}$  be its conjugate. Given:  $4z - 3\overline{z} = \frac{1 - 18i}{2 - i}$ ,

write the expression  $\frac{1}{z-2i} \cdot (z^2 - 8i^{19})$  in the form of a+bi. A) 12+9iB) 24-32iC)  $\frac{108}{5} - \frac{19}{5}i$ D)  $\frac{24}{5} - \frac{32}{5}i$ E)  $\frac{12}{5} + \frac{9}{5}i$ F) None of these

- 18. A circle passing through the point (0,10) is tangent to the x axis at x = 20. Find the radius of this circle.
  - A) 18
  - B) 20
  - C) 21
  - D) 25
  - E) 30
  - F) None of these

19. Let ABCD be a square as given on the figure below.



Given: |DE| = 4, |AF| = 3, |BC| = 6 and  $m(\angle FGE) = x$ . Find the value of  $\cot(x)$ .

- A) -1/8
- B) -5/4
- C) -3/8
- D) -1/4
- E) -5/8
- F) None of these

20. Given:  $\frac{\cot x}{\tan x + \cot x} = 4\sin x - 3$ , find the value of  $\sin x$ . A)  $3 - 2\sqrt{2}$ B)  $1 - \sqrt{3}$ C)  $-1 + \sqrt{2}$ D)  $-1 + \sqrt{3}$ E)  $-2 + 2\sqrt{2}$ F) None of these 21. Triangle ABC is an isosceles right triangle with right angle B. Given: E is the midpoint of the side AC and |BD| = |AC| = 4. Find |DE| = x. (Note: The image is not drawn to



- C)  $2\sqrt{5-\sqrt{2}}$
- D)  $4\sqrt{4-\sqrt{2}}$
- E)  $2\sqrt{5-2\sqrt{2}}$
- F) None of these
- 22. Evaluate the following:

 $\sin\left(2\arcsin\left(\frac{3}{5}\right)\right) + \sec\left(2\arccos\left(\frac{\sqrt{2}}{3}\right)\right).$ 

- A)  $-\frac{21}{25}$ B)  $-\frac{31}{25}$ C)  $\frac{19}{225}$ D)  $\frac{269}{225}$ E)  $-\frac{11}{25}$
- F) None of these

23. Amy and Bob are standing at the seashore 2 miles apart. The coastline is a straight line between them. Both can see the same ship in the water. The angle between the coastline and the line between the ship and Amy is 45 degrees; the angle between the coastline and the line between the ship and Bob is 75 degrees. What is the distance between the ship and Bob?

A) 
$$\sqrt{6}$$
 miles  
B)  $\frac{\sqrt{6}}{2}$  miles  
C)  $\frac{2\sqrt{6}}{3}$  miles  
D)  $\frac{2\sqrt{3}}{3}$  miles  
E)  $\frac{\sqrt{3}}{2}$  miles  
F) None of these

24. Let t be a real number satisfying  $\cos t = \tan t$ . Find the value of the expression

 $\frac{2}{\sin t} + \cos^4 t - \sin t \; .$ 

A) 2
B) 3
C) -2
D) 1
E) 0
F) None of these

- 25. A regular polygon with side length  $r\sqrt{2-\sqrt{3}}$  is inscribed in a circle with radius *r*. How many sides does this polygon have?
  - A) 6
  - B) 8
  - C) 9
  - D) 12
  - E) 18
  - F) None of these

- 26. Let  $\vec{u}$  and  $\vec{v}$  be two different vectors in the coordinate plane whose sum is equal to the zero vector. Which of the following is/are true?
  - I.  $\left\| 2\vec{u} \vec{v} \right\| = \left\| \vec{v} \right\|$ .
  - II. If  $\vec{u} + 3\vec{v} = (2, -4)$ , then  $\vec{u} = (-1, 2)$ .
  - III. The angle between  $\vec{u}$  and  $\vec{v}$  is  $180^{\circ}$ .
  - A) I only
  - B) III only
  - C) I and II
  - D) I and III
  - E) II and III
  - F) None of these
- 27. Evaluate:  $(1-\sqrt{3}i)^9$ 
  - A)  $256 256\sqrt{3}i$
  - B) -1024
  - C) 512
  - D) -512
  - E)  $1024 1024\sqrt{3}i$
  - F) None of these

28. Let 
$$\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
 and  $m = (\cos\theta)^{\cos\theta}$ ,  $n = (\sin\theta)^{\cos\theta}$ ,  $p = (\cos\theta)^{\sin\theta}$ ,  $q = (\cos\theta)^{\sin(4\theta)}$ .

Which of the following is/are true?

- I.
   m < n < p 

   II.
   p < m < n 

   III.
   q m < 0 

   IV.
   p < n < q
- A) II and III only
- B) I and IV only
- C) II and IV only
- D) III only
- E) II only
- F) None of these

- 29. Drones A and B leave the same point at the same time. Drone A flies 10 miles with a bearing of  $N75^{\circ}E$ . Plane B flies 20 miles with a bearing of  $S15^{\circ}W$ . Find the distance between the drones A and B.
  - A)  $10\sqrt{3}$
  - B) 10√7
  - C)  $20\sqrt{3}$
  - D) 16√5
  - E)  $20\sqrt{7}$
  - F) None of these
- 30. The lines  $d_1$  and  $d_2$  intersect at the point O with an angle of  $30^0$  as shown in the figure below.



Points  $A_1, A_2, ..., A_{20}$  and  $B_1, B_2, ..., B_{20}$  are marked with the following pattern:

A line segment perpendicular to  $d_2$  is drawn from the point  $A_1$  to the point  $B_1$ ;

A line segment perpendicular to  $d_1$  is drawn from the point  $B_1$  to the point  $A_2$ ;

A line segment perpendicular to  $d_2$  is drawn from the point  $A_2$  to the point  $B_2$ ; and so on, until all 40 points are marked. (*The figure above is not complete due to limited space.*)

If  $|A_1B_1| = 12$ , find the sum:  $|A_1B_1| + |A_2B_2| + |A_3B_3| + \dots + |A_{20}B_{20}|$ .

A) 
$$\frac{3(2^{42}-3^{21})}{2^{40}}$$
  
B) 
$$\frac{3(2^{40}-3^{20})}{2^{38}}$$
  
C) 
$$\frac{3(1-3^{20})}{2^{40}}$$
  
D) 
$$\frac{3(2^{40}-3^{20})}{2^{36}}$$
  
E) 
$$\frac{2^{42}-3^{21}}{2^{40}}$$

F) None of these

The following questions are part of this test, but they are not multiple choice. For the following 3 questions, write your answer on the answer sheet as a number. For example:

25, 0, 4.5, -2.7, 
$$1+5\sqrt{7}$$
,  $4\sqrt{11}+5\sqrt{7}$ ,  $4\sqrt{3}$ ,  $1/4$ , 12/13 or 50/11

are acceptable answers. Radical expressions should be reduced; for example,  $\sqrt{12}$  should be written as  $2\sqrt{3}$ . Show your work on the empty space below each question and <u>write your final</u> answer on the answer sheet. Your work may be used to break ties.

31. On the figure below, ABC and DBE are triangles with |AD| = |BD| and |BE| = |EC|.

Given  $|AB| = 36\sqrt{2}$ ,  $\sin(\angle BAD) = \frac{1}{3}$  and  $\sin(\angle BCE) = \frac{1}{5}$ , find the area of the triangle

BDE.

(Note: The image is not drawn to scale.)



## ANSWER: \_\_\_\_\_

32. The height of water in a bay various with time and can be modeled by the function  $f(t) = a \sin(t) + b \cos(t)$ , where *a* and *b* are real numbers and t > 0 represents time. The difference between the height of the waves at low tide and high tide is 10 feet. Find the largest possible value of a+b.

ANSWER: \_\_\_\_\_

33. Let  $f(x) = \frac{x^5 + x^4 + 25x^2 + 20x + 10}{x^5 - 8x^3 + 2x^2 - 8x + 4}$ .

If this function intersects its horizontal asymptote, then list the x – coordinates of all points of intersection (if any). If it does not intersect the horizontal asymptote, state "none".

ANSWER: \_\_\_\_\_

THE END! Check that you wrote your answers on the answer sheet; only the answer sheet will be graded.