(1)	$729 \div (9(39 - 12)) = $	(29) $14 \div 5.\overline{3333} = $ (improper fraction)
(2)	$42 \times 126 =$	$(30) 22 - 32 - 23 = _$
(3)	$73^2 = $	(31) $18^3 =$
(4)	76413 + 61748 - 14679 =	(32) $\sqrt[3]{12 \times 9216} = $
(5)	978 × 15 =	$(33) \ 3^5 + 2^9 - 7^3 = _$
(6)	$118^2 - 68^2 = $	(34) Find the slope of the line perpendicular to the line which contains the points $(-2, -1)$ and $(12, -7)$.
(7)	$233 \times 317 =$	(35) $0.25\overline{2222} = $ (proper fraction)
(8)	$17 \times 53 + 34 = $	(36) $17^2 \times 68^3 \div 34^4 =$
(9)	$1 + 2^2 + 4^2 + 5^2 + 7^2 = _$	$(37) \ 3+1-1-3-5-\ldots -19 = _$
(10)	$3\frac{12}{17} + 5\frac{2}{13} = $ (mixed number)	$(38) \ 14641^{3/4} = _$
(11)	$80 \div 27 + 298 \div 27 = $	$(39) \ 543_7 - 246_7 = \underline{\qquad} 7$
(12)	138 ² =	$(40) \ (3)^{-3} + (5)^{-2} = _$
(13)	The GCD of 51, 85, and 38 is	(41) The largest prime factor of 7338 is
(14)	21.25% = (proper fraction)	(42) $10! \div 6! - 7! \div 6! = $
(15)	Which is smaller, $-\frac{13}{37}$ or $-\frac{5}{14}$?	$(43) \ 1110_2 + 1101_2 = __\2$
(16)	$(36 + 59 + 24) \div 8$ has a remainder of	(44) $CLXVI + LXXI = $ (Roman numeral)
(17)	$5\frac{7}{8} \div 3\frac{1}{8} =$ (improper fraction)	(45) The smallest root of $x^3 - 3x^2 - 22x + 24$ is
(18)	$20 \times 163.5 =$	(46) $_{10}C_7 = _$
(19)	$21^2 + 12^2 - 129 = _$	(47) $\sqrt[3]{9 \times 31 + 64} =$
(20)	7 in. \times 24 in. \times 36 in. =cubic feet	(48) If $(3 - 4i)(1 - 6i) = a + bi$, then $a + b =$
(21)	$105 \div 0.3125 =$	(49) The geometric mean between 6 and 24 is
(22)	$76 \times 7\frac{1}{4} =$	(50) The largest integer n such that $\pi \times n < 100$ is
(23)	$86716 \div 4 = $	(51) $2021_4 = $ 10
(24)	29 × 87 =	(52) $11! \div 8! - 10! \div 7! = $
(25)	How many unique whole numbers will divide evenly into	(53) The multiplicative inverse of -12.35 is
(20)	724?	(54) Give the hundreds digit of 4 ⁺
(26)	DCCXXIV + CLXIII =(Arabic numeral)	(55) How many non-empty proper subsets does a set with 12 elements have?
(27)	28% of 80 is 40% of	(56) $(5-2i)(1+i)(2-3i)(3+4i) =$
(28)	$\sqrt{9216} = $	(57) $441 \times 289 =$

(58)	Give the value of $\sqrt{1703}$ rounded to the nearest whole	(83)	The sum of the first 7 triangular numbers is
	number	(84)	$243_8 + 1433_5 = \10$
(59)	Find $7x$ if $\log_x 8 = 0.3333$.	(85)	If $13x+3 \equiv 7 \pmod{9}$, the smallest positive integer value
(60)	$19^2 \div (12.\overline{3333})^2 \times 37^2 = _$		of <i>x</i> is
(61)	$9\frac{8}{13} \div 7\frac{8}{13} = $ (mixed number)	(86)	$\cos\left(\arctan\left(\frac{8}{15}\right)\right) = _$
(62)	Give the minimum value of the function $f(r) = 4 - 3r + 2r^2$	(87)	The Greatest Integer Function is written as $f(x) = [x]$. Find $\left[\sin\left(\frac{5\pi}{3}\right)\right]$
(c2)	2007 - f 22 7 :-	(88)	$\sqrt{245025} = $
(63)	Solve for $x: \sqrt{x} - \sqrt{117} = \sqrt{52}$	(89)	The x-value of the rectangular coordinates for the point in polar $(3, -\frac{\pi}{6})$ is
(65)	9 + 40i =	(90)	If $xy = 15$ and $x - y = 4$, then $x^2 + y^2 =$
(66)	$34_5 = $ 9	(91)	Solve for <i>x</i> : $\log_x 486 - \log_x 2 = 5$
(67)	The volume of a cube with a face-diagonal of length of	(92)	If $f(x) = x^3 + 2x^2 - x + 11$, then $f''(-2) =$
(01)	8 is	(93)	$\cos^2\left(\frac{7\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right) = \underline{\qquad}$
(68)	$\langle -1,5\rangle\cdot\langle 3,2\rangle =$	(94)	If $g(x) = \sqrt{x+1} + 6x^4$, $g'(3) =$
(69)	$\begin{vmatrix} 7 & 19 \\ -3 & 4 \end{vmatrix} = \underline{\qquad}$	(95)	The graph of $y = \frac{x^2 - 5x - 6}{x^2 - 1}$ has how many vertical asymptotes?
(70)	Find $f^{-1}\left(\frac{\pi}{2}\right)$ if $f(x) = \cos^2(x) + 2x - \frac{1}{2}$	(96)	The largest even prime less than 10! is
(71)	$1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots - \frac{1}{1024} = _$	(97)	For $f(x) = x \cos(x), f'''(0) =$
(72)	$_7P_3 \times_5 P_2 = $	(98)	$\int_{-1}^{2} x^{3} dx =$
(73)	Find $f(f(1))$ for $f(x) = \frac{2x - 1}{x^2 + x - 3}$	(99)	$(987654321 - 9) \div 8 = _$
(74)	$2\cos\left(\arctan(\sqrt{3}) - \arccos(2)\right) =$	(100)	The arithmetic mean of 81, 17, and is 41.
(75)	$8 \times 24 - 26 \div 65 \times 35 = _$	(101)	$\lim_{x \to \infty} \arctan\left(\frac{x}{3}\right) = \underline{\qquad}$
(76)	$9^9 \div 6$ has a remainder of	(102)	$\lim_{x \to -4} \frac{\sin(\pi x)}{x^2 - 16} = -$
(77)	$\cos^2\left(\frac{\pi}{8}\right) - \sin^2\left(\frac{\pi}{8}\right) = \underline{\qquad}$	(103)	$\sqrt{11^2 + 60^2} =$
(78)	$ (2+i)(6-7i) ^2 = $	(104)	Observe: $10! \div (6!)^2 = 7$. So $12! \div (6!)^2 =$
(79)	The product of the solutions to $ x^2 - 4 = 2$ is	(105)	$\int_{0}^{1} u \times u^{2} \times u^{3} \times \ldots \times u^{7} du -$
(80)	$ \tan\left(\frac{2\pi}{3}\right) = $ (round to tenths place)	(106)	$\int_0^{10} g \times g \times g \times g \times g \times g = \underline{\qquad}$
(81)	The sum of the prime factors of 3570 is	(100)	20 = 13 =
(82)	$\lim_{x \to 4} \frac{3x - 12}{x^2 - 16} = $	(107) (108)	$2048 \wedge 408 = $ 8 The harmonic mean of $\frac{1}{2}$, 2 and 4 is
		, i	-

- nor axis length $\frac{1}{2}$ is _____
- (112) The slope of the tangent line at the point (3, 4) on the circle of radius 5 centered at the origin is _____

- (109) The angle between $\langle 3, 3 \rangle$ and $\langle 5, 0 \rangle$ is ______ (115) The largest value of x which satisfies $\frac{x^2 18x 63}{x 6} \le 0$ (110) Given $A = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{6} & \frac{1}{6} & 0\\ 0 & 0 & 3 \end{bmatrix}$, we have $(A^{-1})_{1,2} =$ _____ (115) The largest value of x which satisfies $\frac{x^2 18x 63}{x 6} \le 0$ (116) The geometric mean of 8, 27, and _____ is 30. (111) The area of an ellipse with major axis length 4 and mi- (117) The x-value of the point (-7, 2) rotated about the origin by 135° counter-clockwise is _____ (118) $19276333 \equiv (\mod 3)$ (113) For $f(x) = x^3 + x$, $(f^{-1})'(10) =$ _____ (119) $11^5 =$ _____ $(114) \ 17 - 12 \div 2 \times 6 = \underline{\qquad} (120) \ (23^3 + 2^3) \div (23^2 - 2 \times 23 + 2^2) = \underline{\qquad}$

END OF EXAM! Do not use this space for scratch work!