2023 UH Mathematics Contest Number Sense Exam

Directions: Read the instructions carefully before you begin this exam. You will have 30 minutes to complete this exam. Solve accurately as many problems as you can in the order in which they appear and enter your answers using the panel on your screen. ALL PROBLEMS ARE TO BE SOLVED MENTALLY. Make NO calculations on paper. Enter the answer correctly for each question. You cannot erase anything once the numbers are entered. Five points will be awarded for correct answers and four points will be deducted for each problem not solved correctly and for each problem skipped. No deduction is taken for problems after the last problem attempted. All answers should be either (simplified) fractions, or decimals, or just integers. Mixed numbers are NOT allowed. Answers should be written in the most efficient form possible. Problems marked with a $(*)$ require approximate integral answers; any answer to a starred problem that is within five percent of the exact answer will be scored correct; all other problems require exact answers.
(1) $4422 \div 6=$
(2) $2 \frac{5}{8}=$ \qquad \% (decimal)
(3) $\frac{4}{5} \times \frac{5}{6}=$ \qquad (fraction)
(4) $76 \%=$ \qquad (fraction)
(5) $2022-2023=$
(6) $14 \times 23+14 \times 47=$
(7) DCCXLIX $=$
(8) $2005 \times 5-2005=$
(9) $4 \frac{1}{4} \%=$ \qquad (fraction)
(10) $49 \times 125=$
(11) $\mathrm{MDII}+\mathrm{CX}=$ \qquad
(12) $26^{2}=$ \qquad
(13) $2001 \times 15-15=$
*(14) $2153+1620+1921+5316=$ \qquad
(15) $85 \times 105=$
(16) The mean of $23,27,35$, and 31 is \qquad
(17) $3 \frac{1}{4} \times 16=$ \qquad
(18) 16 is what $\%$ of 40 ?
(19) $3+9+15+\ldots+33=$ \qquad
(20) $135 \times 12=$
(21) The sum of the positive integral divisors of 95 is
(22) $\operatorname{LCM}(35,55) \times \operatorname{GCD}(35,55)=$ \qquad
(23) The number of prime divisors of 80 is \qquad
(24) The LCM of 34 and 85 is \qquad
(25) MMDCXXV \div CLXXV $=$ \qquad
(26) $275 \times 11=$
(27) How many elements are in
$\{x \mid 30<x<40$, where $x \in\{$ Primes $\}\} ?$
*(28) $\sqrt{224} \times \sqrt{325}=$ \qquad
(29) $315_{6}=$ \qquad
(30) $0.666 \ldots \times .272727 \ldots=\longrightarrow$ (fraction)
(31) If $\frac{3}{4 x}=\frac{2}{5}$, then $x=\frac{A}{B}$. A is
(32) The slope of the line through the points $(5,-3)$ and $(2,1)$ is \qquad (fraction)
(33) $5 \frac{2}{3}-4 \frac{5}{12}=$ \qquad (fraction)
(34) If $24^{2}-20^{2}=11 k$, then $k=$ \qquad
(35) A quart is what $\%$ of a cup? \%
(36) $(3 \times 19+24) \div 9$ has a remainder of \qquad
(37) The set $\{l, i, n, e, a, r\}$ has _ 4-elements subsets
(38) $12^{2}+4^{2}=$
(39) If $f(x)=x^{2}-10 x+25$, then $f(37)=$ \qquad
(40) $0.2353535 \ldots=$ \qquad (fraction)
(41) Set A has 4 elements, set B has 7 elements, and $A \cap B$ has 3 elements, then $A \cup B$ has \qquad elements
*(42) $4 \frac{2}{3} \times 1423 \div 14=$
(43) $1^{2}+1^{2}+2^{2}+3^{2}+5^{2}+8^{2}+13^{2}=$
(44) Let $(27 x-23)^{2}=a x^{2}+b x+c$.

Find $a+b+c$.
(45) $\frac{1}{3}+\frac{1}{9}+\frac{1}{27}=$ \qquad (fraction)
(46) $65_{10}=$ \qquad 7
(47) The slope of the line $\frac{1}{7} x+\frac{1}{2} y=\frac{2}{3}$ is \qquad (fraction)
(48) If $\sqrt{50}-\sqrt{18}=\sqrt{x}$, then $x=$ \qquad
(49) $4^{2}+3=$ \qquad
(50) 13.3 is \qquad $\%$ of 20 .
(51) $43 \times 47=$
(52) How many integers between 3 and 28 are relatively prime to 28 ?
(53) $-2(-3)-(-4)+[-6-(-7)]=$
(54) How many positive integers less than 18 are relatively prime to $18 ?$
(55) Which of the following is a pentagonal number: 20,21 , or $22 ?$
*(56) $(248 \times 53)^{2} \div(47 \times 289)=$
(57) $5^{3} \times 2^{5}=$
(58) If A is 70% of B and B is 80% of C, then A is what percent of C ? \%
(59) If $A^{3} \div A^{k} \times A^{-5}=A^{6}$ and $A>1$, then $k=$ \qquad
(60) If $x-y=3$ and $x y=2$, then $x^{3}-y^{3}=$
(61) If $3^{x}=27$, then $3^{2 x}=$
(62) If $|2 x-1|=5$ and $x<0$, then $x=$
(63) If $75 \times 34=15 \times y$, then $y=$
(64) The number of distinct diagonals in a regular octagon is
(65) The side opposite 30° in a right triangle is $2 \frac{3}{8} \mathrm{~cm}$. The hypotenuse is \qquad cm (decimal)
(66) If $\frac{x+5}{x-5}+\frac{x-5}{x+5}$ is written as the mixed number $A \frac{B}{C}$, then $B=$
(67) If $13, b, 85$ are the integral sides of a right triangle then the area of the triangle is
(68) For $k x^{2}+30 x+25=0$ to have equal roots, k has to have a value of
(69) Find the area of a triangle with side lengths of $11 \mathrm{~cm}, 60 \mathrm{~cm}$, and 61 cm . \qquad cm^{2}
*(70) $\sqrt{6543210}=$
(71) Let $\frac{6!}{4!}=\frac{(x+1)!}{x!}$. Find x.
(72) If $\log _{x} 216=3$, then $x=$ \qquad
(73) The sum of the roots $(2 x+5)^{2}-1=0$ is
$(74)(4+7 \mathrm{i})(3-5 \mathrm{i})=a+b \mathrm{i}$. Find $a-b$.
(75) $42^{2}+\left(40^{2}-2^{2}\right)=$ \qquad
(76) Find the modulus of $12-5 \mathrm{i}$.
(77) The largest integer such that $4 x+3<2$ is \qquad
(78) 24% of $208 \frac{1}{3}$ is \qquad
(79) $32_{6} \div 5_{6} \times 4_{6}=$ \qquad
(80) The 11 th term of $3,8,13,18, \ldots$ is \qquad
(81) The area of a sector with radius 8 in . is 16π sq. in. Then the central angle of this sector is \qquad ${ }^{\circ}$
(82) $121 \times 411=$ \qquad
(83) $\frac{\left(x^{2}+4 x+4\right)\left(x^{2}-5 x+6\right)}{\left(x^{2}-4\right)(x-3)}=x+$
*(84) $\left(2 \pi^{2}\right) \times\left(3 \pi^{3}\right)=$
(85) The first four exact digits of the decimal for $\frac{71}{330}$ are 0.
(86) $\tan \left(\frac{\pi}{3}\right) \times \cot \left(\frac{\pi}{6}\right)=$ \qquad
(87) The volume of a rectangular based pyramid with a base width of 5 in., a base length of $12 \mathrm{in} .$, and a height 13 in. is \qquad cu. in.
(88) Find the sum of all positive integers x such that $3 x-1 \leq$ 23.
(89) How much time has past from $3: 45 \mathrm{pm}$ to $4: 00 \mathrm{pm}$ in one day? \qquad seconds
(90) $0.454545 \ldots 8=$ -10 (fraction)
(91) $\sec \left[\cos ^{-1}(.3)\right]=$ (fraction)
(92) $\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right]=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$.

Find $a+b+c+d$.
(93) A golf store has white, yellow, pink, and orange balls. How many different packs of 3 balls can the store package?
(94) $2 \sin 165^{\circ} \cos 165^{\circ}=$ \qquad (fraction)
(95) Three coins are flipped. What is the probability of getting at least one head? \qquad (fraction)
(96) $95^{\circ} \mathrm{F}=$ \qquad ${ }^{\circ} \mathrm{C}$
(97) $f(x)=5 x^{3}+4 x^{2}+3 x-2$ divided by $x+1$ has a remainder of \qquad
${ }^{*}(98)(3.14)^{e} \times(2.718)^{\pi}=$ \qquad
(99) If $f(x)=3 x^{4}-2 x^{3}+x^{2}$, then $f^{\prime \prime}(1)=$ \qquad
(100) Truncate $5 \sqrt{6}$ to the nearest tenth. \qquad
(101) $\int_{2}^{4}(2 x+4) d x=$ \qquad
(102) Find the slope of the line tangent to $y=2 x^{2}+3 x-2$ at $(-1,-3)$. \qquad *
(103) $\lim _{x \rightarrow 4} \frac{x^{2}+x-20}{x-4}=$ \qquad
(104) If $h(x)$ is the slant asymptote of
$f(x)=\frac{x^{2}-3 x+1}{x-3}$, then $h(1)=$ \qquad
(105) $1213 \times 14=$ \qquad
$(106) f^{\prime}(x)=2, f(1)=3$, find $f(4)$. \qquad
(107) If $f(x)=\frac{3}{1-x}$, then $f^{-1}(2)=$ \qquad (fraction)
(108) The sum of the critical values of $f(x)=x^{3}-3 x+1$ is \qquad
(109) The radius of the inscribed circle of a $6,8,10$, right triangle is \qquad
(110) $47631259 \div 8$ has a remainder of \qquad
(111) $1^{3}-2^{3}+3^{3}-4^{3}+5^{3}=$ \qquad
*(112) 3210 miles/hour $=$ \qquad feet/second

