Geometry Exam
 University of Houston Math Contest 2024

Answer the following. Note that diagrams may not be drawn to scale.

1. If $a \| c$, find $m \angle 1$.

A. 11°
B. 75°
C. 61°
D. 64°
E. 41°
F. Cannot be determined
2. How many distinct lines are determined by five coplanar points, given that exactly three of them are collinear?
A. 4
B. 5
C. 6
D. 7
E. 8
F. 10
3. R is between C and T, and X is the midpoint of $\overline{R C}$.

If $C T=27$ and the ratio of $C X$ to $R T$ is $2: 5$, find the length of $\overline{X T}$.
A. 15
B. 21
C. 3
D. 6
E. 27
F. None of the above
4. The slope of the line passing through $(2,-5)$ and $(6, d)$ is $\frac{7}{2}$. Find the value of d.
A. 19
B. 23
C. 9
D. 14
E. $\frac{27}{7}$
F. None of the above
5. Classify $\triangle C A N$ based on the information in the diagram.

A. obtuse, scalene
B. acute, isosceles
C. right, scalene
D. obtuse, isosceles
E. acute, scalene
F. None of the above
6. Given the following: $\angle 1$ and $\angle 2$ are supplementary $\angle 2$ and $\angle 3$ are supplementary

What conclusion can be drawn about $\angle 1$ and $\angle 3$?
A. $\angle 1$ and $\angle 3$ are complementary
B. $\angle 1$ and $\angle 3$ are supplementary
C. $\angle 1$ and $\angle 3$ are vertical angles
D. $\angle 1 \cong \angle 3$
E. $\angle 1$ and $\angle 3$ are right angles
F. None of the above
7. Suppose that $\overline{A B}$ represents one edge of a cube. If an edge of the cube is randomly chosen from the remaining edges, what is the probability that the randomly chosen edge and $\overline{A B}$ are skew?
A. $\frac{3}{11}$
B. $\frac{1}{4}$
C. $\frac{4}{11}$
D. $\frac{2}{11}$
E. $\frac{1}{3}$
F. None of the above
8. On the planet Elcric, the following conditional statement is true: "If Serauqs are purple, then they are not tall." Which statement(s) below must also be true on the planet Elcric?
I. If Serauqs are not purple, then they are tall.
II. If Serauqs are tall, then they are not purple.
III. If Serauqs are not tall, then they are purple.
A. I only
B. II only
C. III only
D. I, II, and III
E. I and III
F. None of the above
9. \quad What value of x will guarantee that $s \| t$?

A. 85
B. 5
C. 65
D. 35
E. 20
F. Cannot be determined
10. Find the sum of the numbered angles in the diagram below.

A. 540°
B. 270°
C. 360°
D. 720°
E. 180°
F. None of the above
11. In the diagram below, $\overline{E G} \cong \overline{A L}$ and $\angle 1 \cong \angle 2$. What theorem or postulate can be used to prove that $\triangle E B G \cong \triangle A B L$?

A. Angle-Angle-Side
B. Angle-Side-Angle
C. Side-Angle-Side
D. Side-Side-Side
E. Side-Side-Angle
F. The triangles are not necessarily congruent
12. In $\triangle B L T, m \angle T<m \angle B<m \angle L$, list the side lengths from largest to smallest.
A. $L T, B L, B T$
B. $B T, B L, L T$
C. $B T, L T, B L$
D. $B L, L T, B T$
E. $B L, B T, L T$
F. None of the above
13. $\overline{O U}$ is a midsegment of $\triangle D N T$, the ratio of $O N: N T: D T$ is $3: 7: 8$, and the perimeter of $\triangle D N T$ is 126 . Find the length of $\overline{O U}$.

A. 28
B. 24
C. 48
D. 6
E. 12
F. None of the above
14. If $V T=T E$ and $V O>O E$, which of the following statements is true?

A. $m \angle 1>m \angle 6$
B. $m \angle 4>m \angle 2$
C. $m \angle 1<m \angle 6$
D. $m \angle 4=m \angle 2$
E. $m \angle 4<m \angle 2$
F. None of the above
15. Andrew has four straws of the following lengths, in centimeters: $4,7,2$, and 5 . If he randomly chooses three of the straws, what is the probability that he can form a triangle with those three straws?
A. $\frac{3}{4}$
B. 1
C. $\frac{2}{3}$
D. $\frac{1}{2}$
E. $\frac{1}{4}$
F. None of the above
16. Draw parallelogram MATH with diagonals $\overline{M T}$ and $\overline{A H}$. If $\angle M H T$ measures 42° and $\angle A T M$ measures 91°, find the measure of $\angle A M T$.
A. 138°
B. 89°
C. 47°
D. 91°
E. 57°
F. Cannot be determined
17. If $\overline{A D}$ is a median of $\triangle A B C$ and $\overline{A D} \cong \overline{C D}$, classify $\triangle A B C$.
A. scalene
B. isosceles
C. equilateral
D. obtuse
E. right
F. None of the above
18. Jenna is hosting a party with five guests. She hugs each of the five guests once, and each guest hugs each other guest exactly once. How many hugs occur?
A. 10
B. 15
C. 9
D. 12
E. 14
F. None of the above
19. Find $A E$, given that $\overline{B D} \| \overline{A E}$.

A. 25
B. 20
C. 11
D. 15
E. 9
F. None of the above
20. The sum of the measures of the interior angles of a regular convex polygon is 1800°. Find the measure of one of its exterior angles.
A. 30°
B. 144°
C. 150°
D. 36°
E. 15°
F. None of the above
21. A rhombus can have at most \qquad line(s) of symmetry.
A. 0
B. 3
C. 2
D. 4
E. 1
F. None of the above
22. $\triangle A B C$ has vertices $A(2,5), B(8,-1)$ and $C(-3,-4)$. Find the length of median $\overline{C D}$.
A. $\sqrt{130}$
B. $2 \sqrt{17}$
C. $\sqrt{85}$
D. 10
E. $\sqrt{106}$
F. None of the above
23. Find the value of x so that $\overline{A C}$ is an angle bisector of $\triangle A B D$.

A. $x=15$
B. $x=3$
C. $x=5$
D. $x=10$
E. $x=6$
F. No such triangle exists
24. A triangle with side lengths $5,2 \sqrt{10}$, and 9 is what type of triangle?
A. obtuse
B. equiangular
C. acute
D. isosceles
E. right
F. None of the above
25. $\overline{E F}$ is a median of trapezoid $A B C D$. Find the length of $\overline{C D}$.

A. 173.5
B. 48
C. 70
D. 64
E. 51
F. None of the above
26. In the diagram below, $\angle J K M$ is obtuse. Find $J L$.

A. 7
B. 6
C. $6 \sqrt{3}$
D. 9
E. $3 \sqrt{7}$
F. Cannot be determined
27. Circle T is inscribed in right triangle $A B C$. Find the area of $\triangle A B C$, given that $C G=2$ and $A C=6$.

A. 48
B. 18
C. 36
D. 24
E. 30
F. None of the above
28. Regular pentagon $A B C D E$ is shown below. If $\overline{B A} \| \overline{J K}$ and $m \angle K L D=85^{\circ}$, find $m \angle J K L$.

A. 36°
B. 54°
C. 59°
D. 23°
E. 49°
F. None of the above
29. Find $J E$, given that $J M=4$ and $M N=7$.

A. $2 \sqrt{7}$
B. 22
C. 14
D. $\sqrt{77}$
E. $2 \sqrt{11}$
F. None of the above
30. Quadrilateral $D E F G$ is inscribed in a circle and $m \angle G=71^{\circ}$. Find $m \angle E$.
A. 142°
B. 71°
C. 19°
D. 35.5°
E. 109°
F. Cannot be determined
31. Find the value of $a-b$.

A. -0.5
B. 2
C. 6
D. 1
E. 5.5
F. None of the above
32. Find the height of the following right rectangular prism, given that $B C=3 \sqrt{14}$, $G H=2 \sqrt{6}$, and $C E=10 \sqrt{2}$.

A. $4 \sqrt{11}$
B. $5 \sqrt{2}$
C. $\sqrt{74}$
D. $5 \sqrt{6}$
E. $5 \sqrt{10}$
F. None of the above
33. $\overline{E A}$ is tangent to the circle below. Find $A F$.

A. 5
B. 6
C. 7.5
D. 15
E. $2+\sqrt{3}$
F. None of the above
34. A car travels due west for $7 \sqrt{2}$ miles, then travels northwest for 18 miles, then travels southwest for 8 miles, and then travels south for $15 \sqrt{2}$ miles. How far is the car from its starting point, in miles?
A. $30 \sqrt{2}$
B. $\sqrt{1042}$
C. 40
D. $10 \sqrt{10}$
E. $26+22 \sqrt{2}$
F. None of the above
35. Two identically-sized balls fit snugly into a cylindrical container of the same radius so that the combined height of the balls is the same as the height of the container. If each ball has a radius of 5 cm , find the volume of the air in the container which is surrounding the balls, in cubic cm .
A. 300π
B. $\frac{500 \pi}{3}$
C. $\frac{2000 \pi}{3}$
D. 50π
E. $\frac{1000 \pi}{3}$
F. None of the above
36. In the circle below, the degree measure of $\operatorname{arc} A B$ is 54° and $m \angle B E D=107^{\circ}$. Find the degree measure of $\operatorname{arc} C D$.

A. 92°
B. 170°
C. 63.5°
D. 80.5°
E. 73°
F. None of the above
37. Regular hexagon $A B C D E F$ has perimeter $12 \sqrt{3} \mathrm{~cm}$. Find the length of $\overline{B D}$, in centimeters.
A. 24
B. $12 \sqrt{3}$
C. 6
D. $4 \sqrt{3}$
E. 8
F. None of the above
38. In right triangle ABC with hypotenuse $\overline{A B}, \cos (B)=\frac{2}{7}$. Find $\tan (A)$.
A. $\frac{3 \sqrt{5}}{2}$
B. $\frac{2 \sqrt{5}}{15}$
C. $\frac{5}{2}$
D. $\frac{7 \sqrt{53}}{53}$
E. $\frac{3 \sqrt{5}}{7}$
F. None of the above
39. Regular pentagon $A B C D E$ is dilated to create $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. The perimeter of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is 20 cm greater than that of ABCDE , and the area of $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}^{\prime}$ is 9 times that of $A B C D E$. Find the perimeter of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$, in cm .
A. 30
B. 60
C. 10
D. 180
E. 90
F. Cannot be determined
40. The height of a right square pyramid is equal to the length of a base edge. If the volume of the pyramid is $72 \mathrm{~cm}^{3}$, find the lateral area, in square centimeters.
A. $72 \sqrt{2}$
B. $24 \sqrt{5}$
C. $36 \sqrt{2}$
D. 72
E. $36 \sqrt{5}$
F. None of the above

END OF EXAM ©

