Geometry Exam

University of Houston Math Contest 2024

Answer the following. Note that diagrams may not be drawn to scale.

1. If $a \parallel c$, find $m \angle 1$.

- A. 11°
- B. 75°
- C. 61°
- D. 64°
- E. 41°
- F. Cannot be determined

2. How many distinct lines are determined by five coplanar points, given that exactly three of them are collinear?

- A. 4
- B. 5
- C. 6
- D. 7
- E. 8
- F. 10

3. *R* is between *C* and *T*, and *X* is the midpoint of \overline{RC} . If CT = 27 and the ratio of CX to RT is 2:5, find the length of \overline{XT} .

- A. 15
- B. 21
- C. 3
- D. 6
- E. 27
- F. None of the above

- **4.** The slope of the line passing through (2, -5) and (6, d) is $\frac{7}{2}$. Find the value of d.
 - A. 19
 - B. 23
 - C. 9
 - D. 14
 - E. $\frac{27}{7}$
 - F. None of the above
- **5.** Classify ΔCAN based on the information in the diagram.

- A. obtuse, scalene
- B. acute, isosceles
- C. right, scalene
- D. obtuse, isosceles
- E. acute, scalene
- F. None of the above

6. Given the following: $\angle 1$ and $\angle 2$ are supplementary $\angle 2$ and $\angle 3$ are supplementary

What conclusion can be drawn about $\angle 1$ and $\angle 3$?

- A. ∠1 and ∠3 are complementary
- B. $\angle 1$ and $\angle 3$ are supplementary
- C. ∠1 and ∠3 are vertical angles
- D. $\angle 1 \cong \angle 3$
- E. ∠1 and ∠3 are right angles
- F. None of the above

- 7. Suppose that \overline{AB} represents one edge of a cube. If an edge of the cube is randomly chosen from the remaining edges, what is the probability that the randomly chosen edge and \overline{AB} are skew?
 - A. $\frac{3}{11}$
- B. $\frac{1}{4}$
- C. $\frac{4}{11}$ D. $\frac{2}{11}$ E. $\frac{1}{3}$

- F. None of the above
- 8. On the planet Elcric, the following conditional statement is true: "If Seraugs are purple, then they are not tall." Which statement(s) below must also be true on the planet Elcric?
 - If Seraugs are not purple, then they are tall. I.
 - II. If Seraugs are tall, then they are not purple.
 - If Serauqs are not tall, then they are purple. III.
 - A. I only
 - B. II only
 - C. III only
 - D. I, II, and III
 - E. I and III
 - F. None of the above
- 9. What value of x will guarantee that $s \parallel t$?

- 85 A.
- 5 B.
- C. 65
- 35 D.
- E. 20
- F. Cannot be determined

10. Find the sum of the numbered angles in the diagram below.

- A. 540°
- B. 270°
- C. 360°
- D. 720°
- E. 180°
- F. None of the above

11. In the diagram below, $\overline{EG} \cong \overline{AL}$ and $\angle 1 \cong \angle 2$. What theorem or postulate can be used to prove that $\triangle EBG \cong \triangle ABL$?

- A. Angle-Angle-Side
- B. Angle-Side-Angle
- C. Side-Angle-Side
- D. Side-Side-Side
- E. Side-Side-Angle
- F. The triangles are not necessarily congruent
- **12.** In $\triangle BLT$, $m \angle T < m \angle B < m \angle L$, list the side lengths from largest to smallest.
 - A. LT, BL, BT
 - B. BT, BL, LT
 - C. BT, LT, BL
 - D. BL, LT, BT
 - E. BL, BT, LT
 - F. None of the above

13. \overline{OU} is a midsegment of ΔDNT , the ratio of ON: NT: DT is 3: 7: 8, and the perimeter of ΔDNT is 126. Find the length of \overline{OU} .

- 28 A.
- B. 24
- C. 48
- D. 6
- E. 12
- None of the above F.
- 14. If VT = TE and VO > OE, which of the following statements is true?

- A. $m \angle 1 > m \angle 6$
- B. $m \angle 4 > m \angle 2$
- C. $m \angle 1 < m \angle 6$
- D. $m \angle 4 = m \angle 2$
- E. $m \angle 4 < m \angle 2$
- F. None of the above
- **15**. Andrew has four straws of the following lengths, in centimeters: 4, 7, 2, and 5. If he randomly chooses three of the straws, what is the probability that he can form a triangle with those three straws?

- B. 1 C. $\frac{2}{3}$ D. $\frac{1}{2}$ E. $\frac{1}{4}$

- F. None of the above
- Draw parallelogram *MATH* with diagonals \overline{MT} and \overline{AH} . If $\angle MHT$ measures 42° and **16**. $\angle ATM$ measures 91°, find the measure of $\angle AMT$.
 - A. 138°
 - B. 89°
 - C. 47°
 - D. 91°
 - E. 57°
 - Cannot be determined

- **17.** If \overline{AD} is a median of $\triangle ABC$ and $\overline{AD} \cong \overline{CD}$, classify $\triangle ABC$.
 - A. scalene
 - B. isosceles
 - C. equilateral
 - D. obtuse
 - E. right
 - F. None of the above
- **18.** Jenna is hosting a party with five guests. She hugs each of the five guests once, and each guest hugs each other guest exactly once. How many hugs occur?
 - A. 10
 - B. 15
 - C. 9
 - D. 12
 - E. 14
 - F. None of the above
- **19.** Find AE, given that $\overline{BD} \parallel \overline{AE}$.

- A. 25
- B. 20
- C. 11
- D. 15
- E. 9
- F. None of the above

- **20.** The sum of the measures of the interior angles of a regular convex polygon is 1800°. Find the measure of one of its exterior angles.
 - A. 30°
 - B. 144°
 - C. 150°
 - D. 36°
 - E. 15°
 - F. None of the above
- **21.** A rhombus can have at most _____ line(s) of symmetry.
 - A. 0
 - B. 3
 - C. 2
 - D. 4
 - E. 1
 - F. None of the above
- **22.** $\triangle ABC$ has vertices A(2,5), B(8,-1) and C(-3,-4). Find the length of median \overline{CD} .
 - A. $\sqrt{130}$
 - B. $2\sqrt{17}$
 - C. $\sqrt{85}$
 - D. 10
 - E. $\sqrt{106}$
 - F. None of the above
- **23.** Find the value of *x* so that \overline{AC} is an angle bisector of $\triangle ABD$.

- A. x = 15
- B. x = 3
- C. x = 5
- D. x = 10
- E. x = 6
- F. No such triangle exists

- **24.** A triangle with side lengths 5, $2\sqrt{10}$, and 9 is what type of triangle?
 - A. obtuse
 - B. equiangular
 - C. acute
 - D. isosceles
 - E. right
 - F. None of the above
- **25.** \overline{EF} is a median of trapezoid *ABCD*. Find the length of \overline{CD} .

- A. 173.5
- B. 48
- C. 70
- D. 64
- E. 51
- F. None of the above
- **26.** In the diagram below, $\angle JKM$ is obtuse. Find JL.

- A. 7
- B. 6
- C. $6\sqrt{3}$
- D. 9
- E. $3\sqrt{7}$
- F. Cannot be determined

27. Circle *T* is inscribed in right triangle *ABC*. Find the area of $\triangle ABC$, given that CG=2 and AC=6.

- A. 48
- B. 18
- C. 36
- D. 24
- E. 30
- F. None of the above
- **28.** Regular pentagon *ABCDE* is shown below. If $\overline{BA} \parallel \overline{JK}$ and $m \angle KLD = 85^\circ$, find $m \angle JKL$.

- A. 36°
- B. 54°
- C. 59°
- D. 23°
- E. 49°
- F. None of the above
- **29.** Find JE, given that JM = 4 and MN = 7.

- A. $2\sqrt{7}$
- B. 22
- C. 14
- D. $\sqrt{77}$
- E. $2\sqrt{11}$
- F. None of the above

- **30.** Quadrilateral DEFG is inscribed in a circle and $m \angle G = 71^\circ$. Find $m \angle E$.
 - A. 142°
 - B. 71°
 - C. 19°
 - D. 35.5°
 - E. 109°
 - F. Cannot be determined
- **31.** Find the value of a b.

- A. -0.5
- B. 2
- C. 6
- D. 1
- E. 5.5
- F. None of the above

32. Find the height of the following right rectangular prism, given that $BC = 3\sqrt{14}$, $GH = 2\sqrt{6}$, and $CE = 10\sqrt{2}$.

- A. $4\sqrt{11}$
- B. $5\sqrt{2}$
- C. $\sqrt{74}$
- D. $5\sqrt{6}$
- E. $5\sqrt{10}$
- F. None of the above

33. \overline{EA} is tangent to the circle below. Find AF.

- A. 5
- B. 6
- C. 7.5
- D. 15
- E. $2 + \sqrt{3}$
- F. None of the above

- A car travels due west for $7\sqrt{2}$ miles, then travels northwest for 18 miles, then **34**. travels southwest for 8 miles, and then travels south for $15\sqrt{2}$ miles. How far is the car from its starting point, in miles?
 - A. $30\sqrt{2}$
 - B. $\sqrt{1042}$
 - C. 40
 - D. $10\sqrt{10}$
 - E. $26 + 22\sqrt{2}$
 - F. None of the above
- 35. Two identically-sized balls fit snugly into a cylindrical container of the same radius so that the combined height of the balls is the same as the height of the container. If each ball has a radius of 5 cm, find the volume of the air in the container which is surrounding the balls, in cubic cm.
 - A. 300π
- B. $\frac{500\pi}{3}$ C. $\frac{2000\pi}{3}$ D. 50π E. $\frac{1000\pi}{3}$

F. None of the above

36. In the circle below, the degree measure of arc AB is 54° and $m \angle BED = 107$ °. Find the degree measure of arc CD.

- 92° A.
- B. 170°
- C. 63.5°
- D. 80.5°
- E. 73°
- F. None of the above
- Regular hexagon ABCDEF has perimeter $12\sqrt{3}$ cm. Find the length of \overline{BD} , in **37.** centimeters.
 - A. 24
 - B. $12\sqrt{3}$
 - C. 6
 - D. $4\sqrt{3}$
 - E. 8
 - F. None of the above
- In right triangle ABC with hypotenuse \overline{AB} , $\cos(B) = \frac{2}{7}$. Find $\tan(A)$. 38.

- B. $\frac{2\sqrt{5}}{15}$ C. $\frac{5}{2}$ D. $\frac{7\sqrt{53}}{53}$ E. $\frac{3\sqrt{5}}{7}$

- F. None of the above
- 39. Regular pentagon ABCDE is dilated to create A'B'C'D'E'. The perimeter of A'B'C'D'E' is 20 cm greater than that of ABCDE, and the area of A'B'C'D'E' is 9 times that of ABCDE. Find the perimeter of A'B'C'D'E', in cm.
 - 30 A.
 - B. 60
 - C. 10
 - D. 180
 - E. 90
 - F. Cannot be determined

- **40.** The height of a right square pyramid is equal to the length of a base edge. If the volume of the pyramid is 72 cm³, find the lateral area, in square centimeters.
 - A. $72\sqrt{2}$
 - B. $24\sqrt{5}$
 - C. $36\sqrt{2}$
 - D. 72
 - E. $36\sqrt{5}$
 - F. None of the above

END OF EXAM ☺