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Directions

Your work should be bound in a 3 tab folder or 3 ring binder. The first page
should be a title page containing the school name and the names of the project
team members. The second page (and third or more if needed) should contain
the table of contents for the project write-up. The subsequent pages should
contain well written solutions to exercises 1-9 (stated on the last few pages of
this document). The final portion of your write-up should contain a description
and URL for the YouTube video requested in exercise 10. Exercise 10 is worth
25% of the total grade on the project. Exercises 1-9 are equally weighted.

Note: Some of the problems will require the use of a computer, and possibly
some programming.

All work will be evaluated based upon quality, clarity, precision and presentation.
Project solutions can be submitted in either of the following ways:
1. On the day of the contest between 8 and 9 am.

2. Via email to [morgan@math.uh.edu by 8am on the day of the contest. In
this case, the document should be attached as a pdf.

Email questions and comments, and check the contest homepage for
updates.




How Do We Plot Objects In
3 Dimensional Space?

One approach is to use Orthogonal
Projection onto a 2D view plane. We can
Illustrate visualization before we show how it
IS done by creating a rotating view of the
curve given parametrically by

(cos(t),sin(t),cos(2t))

See the next slide...



In this case, the View-Plane Is
Rotating

The axes show are axes for the
view plane (to be discussed
shortly). TN
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You will have to
Rotating the view of / play the slide

: AN / show in Power
(cos(t) sin(t) cos(21) «__/ ~ ShowinPower

rotation.




Orthogonal Projection - Concepts

* Direction to the “eye” (only valid in 3
space)

 Orthogonal coordinate system on a view
plane.

e Orthogonal projection onto the view plane.



Fundamental Concepts |

If n is a natural number, then R™ is the set of vectors v of the form

where each v; is a real number. The vector v shown above can be visualized
as a directed line segment from any given point P = (p4,p3, ..., pn) in n — Space
to the point (p; + v, 0, + vy, ..., P, + v,) iIN n — space. Vectors are added and
subtracted element by element, and vectors can be multiplied by real numbers
(scalars) by multiplying each entry in the vector by the real number.

For example: @) + (;g) = (;g) G) N (2_'3,) - (—3.5)’ 2 (;g) - (_56)

Note that R" is closed under addition, subtraction and scalar multiplication.



Fundamental Concepts Il

A vector in R™ is the zero vector if and only if all of its entries are 0, and itis a
nonzero vector if and only if at least one of its entries is nonzero.

If n is a natural number, and u and v are vectors in R™ with

Uq 41

%) Uy
u=| . Jandv =

u?’l vn

then the dot product of u and v, denoted u - v, is the real number given by
UV =UV+ UV + -+ UV,
The Euclidean norm of v, denoted |v|, is the nonnegative real number given by

v =vov

For example: (;) : (2_2) =—-3+5=2 and |(_32)‘ =4 +9=+/13



Fundamental Concepts Il

A vector u in R™ is said to be a unit vector if and only if |u| = 1. We can
normalize a nonzero vector u in R™ by creating the unit vector ﬁu.

You can verify that |u - v| < |u||v| for all vectors u and v in R", and this is the
basis for defining the angle 8 between two nonzero vectors u and v in R™ via
the equation

This motivates the definition that two vectors u and v in R™ are orthogonal
(perpendicular) if and only if u - v = 0. We say that u is orthogonal to v if and
only if u and v are orthogonal.

Furthermore, u and v are orthonormal if and only if u and v are orthogonal
unit vectors.



Fundamental Concepts IV

If u and v are vectors in R" and v is not the zero vector, then we define the

projection of u onto v, denoted proj_u, by the vector
_ u-v
proj u = WU

I

proj,v



Fundamental Concepts V

If u is a vector in R™ with

Uuq
U
u= :
un
then we write
Uq
U
[ul uz un]T — :

un

This notation is convenient for writing vectors “in line.” For example, we can

2
write [2 —1 0] instead of (—1).
0
Note: Points are visualized differently than vectors, but all of the operations
associated with vectors can be performed on points.



View Plane With Orthogonal
Coordinate System

A view plane in R" is a 2 dimensional plane through the origin.
That is, a view plane in R™ is a set S in R™ such that there are two
nonzero vectors u and v in S such that neither is a scalar multiple
of the other, and S is the set of all vectors of the form

au + v

where a and f are real numbers. We say that the vectors u and
v give an orthogonal coordinate system on S if and only if u and
v are orthonormal.

A view plane in R is just a plane through the origin. You should
be able to show thatif SisinR3>and[a b ¢]T is a nonzero
vector that is orthogonal to each of u and v, then the view plane
can be visualized as the set of all points (x, y, z) where

ax + by + cz = 0.



Orthogonal Projection

(3 Space Version)

A
Z
View Plane .
ax+by+cz=0 eye=[a b c]
(orthogonal to the view plane)
Assume a and b are | >

not both zero. y



Orthogonal Projection

(3 Space Version)

A
Z
View Plane :
ax+by+cz=0 eye=[a b (]
(orthogonal to the view plane)
‘\ g
- y
coordinate
axes in the
view plane.



Orthogonal Projection

(3 Space Version)

View Plane :
ax+by+cz=0 eye=[a b (]

(orthogonal to the view plane)

coordinate
axes in the
view plane.



Orthogonal Projection

(3 Space Version)

View Plane

ax+by+cz=0 eye=[a b c]T

(orthogonal to the view plane)

O\t

>
coordinate y
axes in the
view plane. up = projection of [00 1]T onto the

view plane
X =[001]" - proj, , [00 17’
Note: If u and v are in R®, then u x v
is the cross product of u and v, and right = up x eye
u X v is orthogonal to each of u and
v. Google “cross product.”



Orthogonal Projection

(3 Space Version)

P = (Xy:Yo:Z,) IS @ point.

View Plane :

ax+by+cz=0

eye=[a b ]

(orthogonal to the view plane)

O\t

>

coordinate y

axes in the up = projection of [001]" onto the

view plane. view plane

_ T . T
y =[001] - proj,,, [001]

Note: If u and v are in R®, then u X v right = up x eye
is the cross product of u and v, and
u X v is orthogonal to each of u and Then normalize these two vectors.

v. Google “cross product.”



Orthogonal Projection

(3 Space Version)

Assume the normalized versions
of up and right keep the same
names. The coordinates of the
point Q are given by

Q= projrightp + pT‘OjupP

coordinate
axes in the
view plane.

We visualize the point P with
respect to the view plane by
plotting the point

(P-right, P - up)

Q = The projection of P onto the view plane.

P = (Xy:Yg:Zo) 1S @ point.
* T

eye=[a b (]

(orthogonal to the view plane)

>
y

up = projection of [00 1]T onto the
view plane

X =[001]" - proj, , [00 17’

right = up x eye

Then normalize these to unit vectors.



Warning: Orthogonal projection
can create illusions because
there Is no perspective.



Can you see the illusion In this
rotating view?

You will have to play the slide show in Power Point
to see the rotation.



Matlab Code

(.m file to create a rotated view w/o face shading)

hold off for i=0:2000
theta=pi/4+i*pi/200;
x=[000O0OO0ONaN1ONaN10ONaN10ONaN1ONaN11111]j eye=[cos(theta) sin(theta) 1];
y=[00110NaNOONaN11NaN11NaNOONaNO0OO110j up=[0 0 1];
z=[01100NaNOONaNOONaN11NaN11NaN01100j pup=up-dot(up,eye)/dot(eye,eye)*eye;
right=cross(pup,eye);
P=[x;y;z]; u=right/norm(right);
P=P-1/2; v=pup/norm(pup);
Xp=u*P;
plot([NaN],[NaN]); yp=Vv*P;
axis([-2 2 -2 2)); plot(xp,yp,'b";
axis manual axis([-2 2 -2 2));
axis off axis off
ginput(1); drawnow
hold on hold off
end

Note: If you do not have Matlab, then you can use this as pseudo code to see how
the rotation can be created. You do not need Matlab to complete this project.



Visualizing a Point in R™ wrt a
View Plane

This idea can be extended to visualize points in higher dimensional spaces.
The only changes that occur deal with the lack of cross product. In this setting,
the orthogonal vectors that define the axes of the view plane are usually given
from the beginning, without any care for a notion of an up vector.

In this setting we first obtain two orthonormal vectors u and v in R™, and we use
these vectors as an orthogonal coordinate system for the view plane generated
by u and v. We visualize a point P in R™ with respect to this view plane by
plotting the point (P - u, P - v). Furthermore, if we want to visualize a line
segment connecting points P and Q in R, with respect to this view plane, then
we plot the line segment connecting the points (P-u,P-v) and (Q - u, Q - v).



The Standard
n Dimensional Unit Cube

The standard n dimensional unit cube is the convex shape
determined by the vertices (eq, ..., ), Where each e; is
either 0 or 1. That s, if N is the total number of vertices,
and the vertices are denoted by P4, ..., Py, then the
standard n dimensional unit cube is the collection of all
points given by

a1P1 + a'sz + -+ Cl.’NPN

where each «; is a nonnegative real numberand a; + -+ ay < 1.
The edges of the standard unit cube are the line segments

connecting the vertices that differ from of each other in
exactly one entry.



Standard 4 Dimensional Unit Cube
Vertices and Edges

(1,1,0.0)
(1,0.0,0) (1,0,1,0) (1,1,1,0)

/ (0,1,0,0) (1,0,0,1) (1,1.0.1) \
(0,0,0,0) (1,1,1,1)
(0,0,1,0) (0,1,1,0) (1,0,1,1)

(0,0,0,1) (0,1,0,1) 0,1,1,1)

(0,0,1,13



Standard 5 Dimensional Unit Cube
Vertices and Edges

(0,0,0,0,0)

(1,0,0,0,0)
(0,1,0,0,0)
(0,0,1,0,0)
(0,0,0,1,0)

(0,0,0,0,1)

(1,1,0,0,0)
(1,0,1,0,0)
(1,0,0,1,0)
(1,0,0,0,1)
(0,1,1,0,0)
(0,1,0,1,0)
(0,1,0,0,1)
(0,0,1,1,0)
(0,0,1,0,1)

(0,0,0,1,1)

(0,0,1,1,1)
(0,1,0,1,1)
(0,1,1,0,1)
(0,1,1,1,0)
(1,0,0,1,1)
(1,0,1,0,1)
(1,0,1,1,0)
(1,1,0,0,1)
(1,1,0,1,0)

(1,1,1,0,0)

(0,1,1,1,1)
(1,0,1,1,1)
(1,1,0,1,1)
(1,1,1,0,1)

(1,1,1,1,0)

(1,1,1,1,1)



A Convenient View Plane

A convenient view plane in R™ is one that is generated by the vectors

cos(m/n) sin(m/n)
_ [ cos(Zm/n) and v = sin(2mw/n)
cos(n.n/ n) sin(n'n/ n)

It is not difficult to show that u and v are orthogonal, and you will be asked
to do this in one of the exercises.



Strategy for Visualizing the
Standard n Dimensional Unit Cube

« Create orthonormal vectors that generate the view plane.

« Create the vertices for the cube.

* Create the coordinates for the projected vertices (in the
view plane).

« Determine the connections to create edges.

« Sketch the edges by connecting the appropriate
projected vertices in the view plane.

Note: The sketch created through this process only
represents the edges of the cube, but it is enough to
visualize the cube.



4 Dimensional Unit Cube wrt the
Convenient View Plane




4 Dimensional Unit Cube
with Rotation

(actually, the view plane is rotating to create the effect)

| have colored 2 of
the 2 dimensional
faces in the cube so
that you can see how
they move with the
rotation.

You will have to play the slide show in Power Point
to see the rotation.



Another View of the Rotating
4 Dimensional Unit Cube

This one better illustrates changes in plots depending
upon different view planes.

You will have to play the slide show in Power Point
to see the rotation.



6 Dimensional Unit Cube wrt the
Convenient View Plane

oty
oS




Exercises

Show that the vectors that generate the convenient view plane are
orthogonal. Find |u| and |v|. Are they orthonormal?

Use the convenient view plane in R® to visualize the curve given
parametrically by (cos(t), sin(t), cos(2t)).

Seteye = [0.5 0.5 1]7, and create the view plane in R® thatis
perpendicular to eye. Then create the visualization of the standard 3
dimensional unit cube with respect to this view plane.

Foreach 8 = in/10, fori =0, ..., 19, set eye = [cos(f) sin(8) 1]7, and
create the view plane in R® that is perpendicular to eye. Then create the
visualization of the standard 3 dimensional unit cube with respect to this
view plane. Your work should produce 20 plots.

Produce the visualization of the 5 dimensional unit cube with respect to
the convenient view plane in R®.

Then produce the visualization of the 7 dimensional unit cube with
respect to the convenient view plane in R”.

If you write a computer program to create the visualizations, then include
your code.



Exercises Continued

6. Let C, denote the standard n dimensional unit cube. The 1 dimensional
faces of C,, are the edges of C,,. Notice that the edges are line segments
that connect 2 vertices that differ in only one entry. More generally, we can
define the notion of a k dimensional face of C,, when k is an integer
between 1 and n — 1. First, we fix n — k positions and values of either O or 1
for each of these positions, and choose all of the vertices in C,, that have
these precise values in these positions. Suppose these vertices are given
by Q4, ..., Q. Then the associated k dimensional face is given by all points
of the form a;Q, + - + a),Qy Where each «; is a nonnegative real number
and a; + -+ ay = 1. In addition, we can define the 0 dimensional faces of
C, to be the vertices of C,,. Give the number of k dimensional faces of C,, for
each integer k between 0 and n — 1.

7. |dentify all of the 2 dimensional faces of €3, and also describe the 2 and 3
dimensional faces of C4. In general, describe how k dimensional faces of C,,
are related to C,.

Note: In problem 6, “between” includes the possibility of the
first value and the last value.



Exercises Continued

8. Note that some of the k dimensional faces of C,, contain the origin. For each
k, give the minimum number j, so that there are j distinct faces of
dimension k containing the origin that only have the origin as a common
point of intersection.

9. Suppose k and n are natural numbers. A set of vectors {v,, ..., v, } contained
in R™ is said to be linearly independent if and only if the only collection of
real numbers ay, ..., a; for which a,v; + -+ a3 v, = 0 Is the trivial collection
where a; = 0 for all i. A subset S of R" is said to be a k dimensional
subspace of R™ if and only if there exists a linearly independent set of
vectors {v4, ..., v, } so that S is the collection of all vectors of the form
a,v; + .-+ a, v, where each «; is a real number. For each possible k, and
for each natural number j, determine whether every collection of j distinct
subspaces of dimension k in R™ have a point other than the origin in
common. Justify your answer.

10. (very important) Create a YouTube video of no more than 5 minutes in
length where you creatively discuss n dimensional cubes.



