Statistics Exam 2009 University of Houston Math Contest

School: _____

Please read the questions carefully and give a clear indication of your answer on each question.

There is no penalty for guessing.

Judges will use written comments and/or calculations to settle ties. Good luck.

Statistics Exam

NAME:	

SCHOOL:

You may use a calculator and the attached tables and formula sheets.

Part 1: Multiple Choice. 6 points each.

- 1. The heights of American males aged 18 to 24 years are normally distributed with a mean of 68 inches and a standard deviation of 2.5 inches. 10% of all young American men have heights greater than or equal to
 - (a) 71.2 inches
 - (b) 64.8 inches
 - (c) 73.0 inches
 - (d) The 10th percentile of heights
 - (e) The coefficient of variation of heights.
- 2. Which of the following is an example of a binomial random variable?
 - (a) The number of traffic accidents reported in a 24 hour period.
 - (b) The number of throws of a pair of dice before a seven is rolled.

(c) The number of students who get their own test papers when 20 tests are scrambled and randomly returned to the students in a class.

(d) The number of pet owners in a random sample, without replacement, of students in a first-grade class.

(e) The number of AP Calculus students in a random sample, with replacement, of 100 students in a high school.

NAME:_____

SCHOOL:_____

3. In estimating a population mean or proportion, an advantage of stratified sampling over simple random sampling is

(a) Inferences based on the assumption of a normal distribution are more accurate.

(b) For a given total sample size, the variance of the estimator is smaller if allocation is done properly.

(c) It is less expensive.

(d) It removes any bias in the estimate.

(e) It is suitable for any population, whereas simple random sampling is effective only for very large populations.

- 4. Students in a math course took a prerequisite test at the beginning of the semester. At the end of the semester the distributions of test scores for students earning each letter grade were obtained. Boxplots (box and whisker diagrams) of prerequisite test scores for each letter grade are given below. Which of the following statements is true?
 - (a) There are extreme outliers in test scores for F students.
 - (b) The distribution of test scores for B students is symmetric.
 - (c) 75% of the A students did as well as or better than half of the B students.
 - (d) 75% or more of all D students scored below 60.
 - (e) The interquartile range for A students is the same as the interquartile range for C students.

NAME:______ SCHOOL:_____

- 5. The figure below is a histogram of 999 measurements. The median of the data is closest to:
 - (a) 4.5
 - (b) 4.0
 - (c) 247
 - (d) 2.5

(e) Since the data is not given, there is no way to estimate the median.

- 6. An interplanetary space probe is designed to set down at a certain point on Mars. Because of random perturbations it will miss its planned impact point. The square of the distance from the target point has a chi-squared distribution with two degrees of freedom. Which of the following is closest to the probability that it will land within 2.45 units of distance from its target?
 - (a) 0.10
 - (b) 0.05
 - (c) 0.95
 - (d) 0.50
 - (e) 0.99

NAME:______SCHOOL:_____

- 7. Scores on a nationwide professional qualifying exam are normally distributed with a population mean of 800 and a population standard deviation of 50. An examinee scored at the 60th percentile nationally. To the nearest whole number, what was the examinee's numerical score?
 - (a) 945
 - (b) 800
 - (c) 688
 - (d) 858
 - (e) 813
- 8. Concerned officials know that the number of hours students spend weekly on MySpace is normally distributed with a standard deviation of 3 hours. They would like to monitor a sample of students to estimate the mean amount of time spent. They would like to have an error no greater than 20 minutes with 90% confidence. The minimum number of students needed for their sample is
 - (a) 81
 - (b) 1162
 - (c) 380
 - (d) 220
 - (e) 149

NAME:_____

SCHOOL:_____

Part 2: Free Response. 12 points each. Answer in the space provided. Show your work. Three place accuracy is sufficient for decimal answers.

9. The incidence of a disease in a population is 3%. A diagnostic test gives false positive results 20% of the time and false negative results 2% of the time. Given that the test is positive, what is the probability that the person tested actually has the disease?

10. The diagram on the next page is a relative frequency polygon of 100 measurements. Estimate the median, the quartiles, and the interquartile range. An outlier is defined as an observation that is more than 1.5 times the interquartile range from the nearest quartile. Are there any outliers in this data?

NAME:______SCHOOL:_____

11. Inspection of 50 randomly selected houses in Houston revealed that 8 of them had termite damage. Find a 95% confidence interval for the proportion of all houses in Houston that have termite damage.

NAME:	 	 	
SCHOOL:	 	 	

12. The two sets of software output below are from R and Excel and both apply to the data in the scatter diagram. Use either one to answer the following questions.

- (a) What is the equation of the fitted least squares line? Let x stand for Wind Speed and y for Temperature.
- (b) What is the predicted temperature when the wind speed is 15?
- (c) What fraction of the total variation in temperature is attributable to the linear relationship and the variation in wind speed?
- (d) What is the estimated standard deviation of random error?

<u>R output</u>

> summary(temp.lm)

Call: lm(formula = Temp ~ Wind, data = Air)

Residuals:

Min	10	Median	30 Max	
10 112	5 6/6	1.014	6 25/ 18 88	28
-17.112	-5.040	1.014	0.234 10.80	50
a				
Coefficien	ts:			
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	91.0305	2.3489	38.754	< 2e-16 ***
Wind	-1.3318	0.2226	-5.983	2.84e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.306 on 109 degrees of freedom Multiple R-squared: 0.2472, Adjusted R-squared: 0.2403 F-statistic: 35.79 on 1 and 109 DF, p-value: 2.842e-08

Excel output (continued on the next page)

Regression Statistics						
Multiple R	0.49718972					
R Square	0.24719761					
Adjusted R Square	0.24029117					
Standard Error	8.30644282					
Observations	111					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	df 1	SS 2469.562064	MS 2469.6	F 35.79	Significance F 2.84197E-08	
Regression Residual	df 1 109	SS 2469.562064 7520.67217	MS 2469.6 68.997	F 35.79	Significance F 2.84197E-08	
Regression Residual Total	df 1 109 110	SS 2469.562064 7520.67217 9990.234234	MS 2469.6 68.997	F 35.79	Significance F 2.84197E-08	
Regression Residual Total	df 1 109 110	SS 2469.562064 7520.67217 9990.234234	MS 2469.6 68.997	F 35.79	Significance F 2.84197E-08	
Regression Residual Total	df 109 110 Coefficients	SS 2469.562064 7520.67217 9990.234234 Standard Error	MS 2469.6 68.997 t Stat	F 35.79 P-value	Significance F 2.84197E-08 Lower 95%	Upper 95%
Regression Residual Total Intercept	df 109 110 <u>Coefficients</u> 91.030517	SS 2469.562064 7520.67217 9990.234234 Standard Error 2.348945166	MS 2469.6 68.997 t Stat 38.754	F 35.79 <i>P-value</i> 1E-65	Significance F 2.84197E-08 Lower 95% 86.3749842	Upper 95% 95.6860498

T A B L E Percentiles of the χ^2 Distribution—Values of χ^2_P Corresponding to P

		2					<u> </u>	T	<u> </u>	
aj	X.005	X.01	X.025	$\chi^{2}_{.05}$	$\chi^2_{.10}$	$\chi^2_{.90}$	$\chi^{2}_{.95}$	$\chi^{2}_{.975}$	$\chi^{2}_{.99}$	$\chi^2_{.995}$
1 2 3	.000039 .0100 .0717	.00016 .0201 115	.00098 .0506 216	.0039 .1026	.0158 .2107	2.71 4.61	3.84 5.99	5.02 7.38	6.63 9.21	7.88 10.60
4	.207	.297	.484	.711	1.064	0.25	7.81	9.35	11.34	12.84
. 5	.412	.554	.831	1.15	1.61	9.24	11.07	12.83	15.28	14.80
6 7	.676 .989	.872 1.24	1.24 1.69	1.64 2.17	2.20 2.83	10.64	12.59	14.45	16.81	18.55
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	20.28
10	2.16	2.09	3.25	3.33 3.94	4.17 4.87	14.68 15.99	16.92 18.31	19.02 20.48	21.67 23.21	23.59
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	4.07	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
15	4.60	5.23	6.26	0.37 7.26	7.79 8.55	21.06 22.31	23.68 25.00	26.12 27.49	29.14 30.58	31.32 32.80
16 18	5.14 6.26	5.81 7.01	6.91 8 23	7.96	9.31	23.54	26.30	28.85	32.00	34.27
20	7.43	8.26	9.59	10.85	10.80	25.99	28.87	31.53	34.81	37.16
24	9.89	10.86	12.40	13.85	15.66	33 20	36.42	30.36	37.57	40.00
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	42.98 50.89	43.56
40	20.71	22.16.	24.43	26.51	29.05	51.81	55.76	59.34	63.69	66 77
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.95
120	83.85	86.92	91.58	95.70	100.62	140.23	146.57	152.21	158.95	163.64

For large degrees of freedom,

$$\chi_P^2 = \frac{1}{2}(z_P + \sqrt{2v - 1})^2$$
 approximately,

where v = degrees of freedom and z_P is given in Table 2.

Appendix B: Tables A7

TABLE 2

.99 .000 .000 .000 .000 .000

.000 .000 .000 .000 .000

.000 .000 .000 .000

.000 .000 .000 .000 .000 .000 .002 .026 .222 Cumulative Normal Distribution—Values of P Corresponding to z_p for the Normal Curve

z is the standard normal variable. The value of P for $-z_{\rho}$ equals 1 minus the value of P for $+z_{\rho}$; for example, the P for -1.62 equals $19474 = .0526$.										
Z_p	.00	.01	.02	.03	04	.05	.06	.07	.08	.09
.0	.5000) .5040	.5080	.5120	.5160	.5199	5230	5070	5010	
1.	.5398	.5438	.5478	.5517	.5557	.5596	5636	.5219	.5319	.5359
.2	.5793	.5832	.5871	.5910	.5948	.5987	6026	.5075	.5/14	.5753
.3	.6179	.6217	.6255	.6293	.6331	.6368	6406	6442	.0103	.6141
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.0480	.6517
.5	.6915	· .6950	.6985	.7019	7054	7099	7100		.0844	.0079
.6	.7257	.7291	.7324	.7357	.7389	7422	7454	./15/	.7190	.7224
.7	.7580	.7611	.7642	.7673	7704	7724	7764	./486	.7517	.7549
.8	.7881	.7910	.7939	.7967	7995	8023	0051	.//94	.7823	.7852
.9	.8159	.8186	.8212	.8238	.8264	8289	.8051	.8078	.8106	.8133
1.0	8413	8/30	0461	0.405		.0209	.0315	.8340	8365	.8389
1.1	8643	8665	.0401	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.2	8849	.8005	.8080	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.3	9032	.0009	.0000	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.4	9192	0207	.9000	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.7		.5207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	9429	0441
1.0	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	9535	05/5
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	9625	0632
1.0	.9041	.9649	.9656	.9664	.9671	.9678	.9686	.9693	9699	0706
1.9	.9/15	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	9803	0808	0010	0017
2.1	.9821	.9826	.9830	.9834	.9838	.9842	9846	0850	.9012	.9817
2.2	.9861	.9864	.9868 -	.9871	.9875	.9878	9881	0884	.90.34	.9857
2.3	.9893	.9896	.9898	.9901	.9904	.9906	9909	0011	.900/	.9890
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	0034	0026
2.5	.9938	.9940	.9941	.9943	9945	0046	0040		.5554	.9930
2.6	.99.53	.9955	.9956	9957	9950	.9940	.9948	.9949	.9951	.9952
2.7	.9965	.9966	.9967	.9968	9969	0070	.9901	.9962	.9963	.9964
2.8	.9974	.9975	.9976	.9977	9977	0070	.99/1	.9972	.9973	.9974
2.9	.9981	.9982	.9982	.9983	.9984	008/	.99/9	.99/9	.9980	.9981
3.0	.9987	9987	0007	0000		.,,,,,	.9965	.9985	.9986	.9986
3.1	.9990	0001	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.2	.9993	0003	1000	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.3	.9995	9995	0005	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.4	.9997	9997	0007	.9990	.9996	.9996	.9996	.9996	.9996	.9997
'			.)))/	.999/	.9997	.9997	.9997	.9997	.9997	.9998

Formulas

Note: As far as possible, these expressions use notation that is common in many statistics textbooks, but in almost every case there are some books that use different notation. Also, the same symbol might have different meanings in different expressions. Most of these will not be needed on the test.

1.
$$\chi^{2} = \sum_{i=1}^{m} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum_{i=1}^{m} \frac{(O_{i} - np_{i})^{2}}{np_{i}} \text{ is distributed as } \chi^{2}(m-1).$$
2.
$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
3.
$$\bar{x} - \bar{y} \pm t_{\alpha/2} s_{p} \sqrt{\frac{1}{m} + \frac{1}{n}}$$
4.
$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
5.
$$s_{p}^{2} = \frac{(m-1)s_{x}^{2} + (n-1)s_{y}^{2}}{m+n-2}$$
6.
$$s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
7.
$$s^{2} = \frac{SS(resid)}{n-2}$$
8.
$$z = \frac{x-\mu}{\sigma}$$
9.
$$z = \frac{\sqrt{n}(\bar{x} - \mu)}{\sigma}$$
10.
$$\hat{\mu}(x) = \bar{y} + \hat{\beta}(x - \bar{x})$$
11.
$$\hat{\beta} = \frac{S_{xy}}{S_{xx}}$$

12.
$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

13. $S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$
14. $S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$
15. $SS(resid) = \sum_{i=1}^{n} (y_i - \hat{\mu}(x_i))^2 = S_{yy} - \hat{\beta}^2 S_{xx}$
16. $\hat{\mu}(x) \pm t_{\alpha/2}(n-2)s\sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{S_{xx}}}$
17. Reject $H_0: \sigma^2 = \sigma_0^2$ in favor of $H_1: \sigma^2 < \sigma_0^2$ if $s^2 < \sigma_0^2 \frac{\chi_{1-\alpha}^2(n-1)}{n-1}$.

18.
$$n > z_{\alpha/2} \frac{1}{4\varepsilon^2}$$

19. $n > z_{\alpha/2}^2 \frac{\sigma^2}{\varepsilon^2}$

20. Reject $H_0: \mu = \mu_0$ in favor of $H_1: \mu > \mu_0$ if $\overline{x} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$.